Tek-Tips is the largest IT community on the Internet today!

Members share and learn making Tek-Tips Forums the best source of peer-reviewed technical information on the Internet!

  • Congratulations IamaSherpa on being selected by the Tek-Tips community for having the most helpful posts in the forums last week. Way to Go!

orthogonal multinomials least squares questure

Status
Not open for further replies.

dongli

Technical User
Aug 30, 2009
9
CN
Hi, guys,

I have implemented the least squares using orthogonal multinomials basis. The result is ok in 1D problems, but not good in 2D.

The structure of the codes is:

a module file - orthogonal_multinomials_least_squares.f90
a test main file - test_OMLS_1d.f90 & test_OMLS_2d.f90

Code:
program main

    use orthogonal_multinomials_least_squares

    implicit none

    integer, parameter :: n = 10
    real, parameter :: dx = 0.1
    real :: x(1,n), f(n), f0(n)
    integer :: i, j, k
    real :: r
    
    do i = 1, n
        x(1,i) = i*dx
        call random_number(r)
        x(1,i) = x(1,i)+r*dx/10.0
    end do

!    f = exp(-100.0*(x(1,:)-0.5)**2)
    f = (x(1,:)-0.5)**2

    call OMLS_init(1, 3)

    call OMLS_fit(n, x, f, n, x, f0)

    call OMLS_finalize

    open(10, file="input_1d.dat", form="unformatted", &
        access="direct", recl=sizeof(r)/4*n)
    write(10, rec=1) x(1,:)
    write(10, rec=2) f
    close(10)

    open(11, file="output_1d.dat", form="unformatted", &
        access="direct", recl=sizeof(r)/4*n)
    write(11, rec=1) x(1,:)
    write(11, rec=2) f0
    close(11)

    stop

end program main

Code:
program main

    use orthogonal_multinomials_least_squares

    implicit none

    integer, parameter :: n = 100, nx = 10, ny = 10
    real, parameter :: dx = 0.1, dy = 0.1
    real :: x(2,n), f(n), f0(n)
    integer :: i, j, k
    real :: r
    
    do j = 1, ny
        do i = 1, nx
            k = (j-1)*nx+i
            x(1,k) = i*dx
            x(2,k) = j*dy
            call random_number(r)
            x(1,k) = x(1,k)+r*dx/10.0
            x(2,k) = x(2,k)+r*dy/10.0
        end do
    end do

!    f = exp(-100.0*((x(1,:)-0.5)**2+(x(2,:)-0.5)**2))
    f = (x(1,:)-0.5)**2+(x(2,:)-0.5)**2

    call OMLS_init(2, 2)

    call OMLS_fit(n, x, f, n, x, f0)

    call OMLS_finalize

    open(10, file="input_2d.dat", form="unformatted", access="direct", recl=sizeof(r)/4*n)
    write(10, rec=1) x(1,:)
    write(10, rec=2) x(2,:)
    write(10, rec=3) f
    close(10)

    open(11, file="output_2d.dat", form="unformatted", access="direct", recl=sizeof(r)/4*n)
    write(11, rec=1) x(1,:)
    write(11, rec=2) x(2,:)
    write(11, rec=3) f0
    close(11)

    stop

end program main

Code:
! orthogonal_multinomials_least_squares module
! Purpose:
!   (1) construct orthogonal multinomials according to discrete data
!   (2) use the generated orthogonal basis to reconstruct the continuous
!       distribution of the data
! Author:
!   Name: DONG Li
!   Email: dongli@lasg.iap.ac.cn
! Mathematics supporter:
!   Name: SONG Xiang
!   Email: ?

module orthogonal_multinomials_least_squares
    implicit none

    integer :: num_dim
    integer :: max_exponent
    integer :: num_row
    integer :: num_monomial
    integer, allocatable :: ranges(:,:)
    integer, allocatable :: exponents(:,:)
    real, allocatable :: coef(:)

    real, allocatable :: psi_buf1(:,:)
    real, allocatable :: psi_buf2(:)

    interface psi
        module procedure psi_internal_point
        module procedure psi_external_point
    end interface psi

contains

    subroutine OMLS_init(nd, me)
        integer, intent(in) :: nd, me

        integer :: i, j, k, m, n

        num_dim = nd
        max_exponent = me
        num_row = me+1

        ! generate the structure of monomials
        ! number of monomials in each range
        allocate(ranges(2:num_row,num_dim))
        ranges(2,:) = 1
        do i = 3, num_row
            do j = 1, num_dim
                ranges(i,j) = sum(ranges(i-1,j:num_dim))
            end do
        end do
        ! total number of monomials
        num_monomial = sum(ranges)+1
        allocate(exponents(num_monomial,num_dim))
        exponents(1,:) = 0
        do i = 2, num_dim+1
            exponents(i,:) = 0
            exponents(i,i-1) = 1
        end do
        m = num_dim+2 ! offset for exponents
        do i = 3, num_row
            n = 1 ! offset base for exponents in previous row
            do k = 2, i-2
                n = n+sum(ranges(k,:))
            end do
            do j = 1, num_dim ! loop for ranges in current row
                do k = 1, sum(ranges(i-1,j:num_dim)) ! loop for monomial
                    exponents(m,:) = exponents(n+k,:)
                    exponents(m,j) = exponents(m,j)+1
                    m = m+1
                end do
                n = n+sum(ranges(i-1,j:j))
            end do
        end do

        allocate(coef(num_monomial))

        write(*, "('ranges:')")
        do i = 2, num_row
            write(*, "('row ', i2, ': ')", advance="no") i
            write(*, *)ranges(i,:)
        end do
        write(*, *)
        write(*, "('exponents:')")
        do i = 1, num_monomial
            write(*, *) exponents(i,:)
        end do

        return
    end subroutine OMLS_init

    subroutine OMLS_fit(num_point, x, f, num_point0, x0, f0)
        integer, intent(in) :: num_point, num_point0
        real, intent(in) :: x(num_dim,num_point), f(num_point)
        real, intent(in) :: x0(num_dim,num_point0)
        real, intent(out) :: f0(num_point0)

        real :: diag_A(num_monomial), B(num_monomial)
        real :: tmp
        real :: A(num_monomial,num_monomial) ! for debug
        integer :: k                         ! for debug
        integer :: i, j

        allocate(psi_buf1(num_point,num_monomial))
        allocate(psi_buf2(num_monomial))
        psi_buf2 = 0.0

        ! set up the buffers
        do j = 1, num_monomial
            do i = 1, num_point
                psi_buf1(i,j) = psi(num_point, x, j, i)
            end do
            do i = 1, num_point
                psi_buf2(j) = psi_buf2(j)+psi_buf1(i,j)**2
            end do
        end do

        B = 0.0
        do j = 1, num_monomial
            diag_A(j) = psi_buf2(j)
            do i = 1, num_point
                B(j) = B(j)+psi_buf1(i,j)*f(i)
            end do
        end do

        coef = B/diag_A

        f0 = 0.0
        do j = 1, num_point0
            do i = 1, num_monomial
                f0(j) = f0(j)+coef(i)*psi(num_point, x, i, x0(:,j))
            end do
        end do

        ! for debug
        A = 0.0
        do k = 1, num_monomial
            do j = 1, num_monomial
                do i = 1, num_point
                    A(j,k) = A(j,k)+psi_buf1(i,j)*psi_buf1(i,k)
                end do
            end do
            write(*,*) A(:,k)
        end do

        write(*, "('The coefficients are:')")
        do i = 1, num_monomial
            write(*, *) coef(i)
        end do

        return
    end subroutine OMLS_fit

    real function psi_internal_point(num_point, x, mono_indx, point_indx) result(ans)
        integer, intent(in) :: num_point
        real, intent(in), target :: x(num_dim,num_point)
        integer, intent(in) :: mono_indx
        integer, intent(in) :: point_indx

        real :: tmp
        real, pointer :: xk(:)
        integer :: i, j

        if(mono_indx == 1) then
            ans = 1
            return
        end if

        do i = num_dim, 1, -1
            if(exponents(mono_indx,i) /= 0) then
                xk => x(i,:)
                ans = x(i,point_indx)*psi_buf1(point_indx,mono_indx-1)
                exit
            end if
        end do

        do i = 1, mono_indx-1
            tmp = 0.0
            do j = 1, num_point
                tmp = tmp+xk(j)*psi_buf1(j,mono_indx-1)*psi_buf1(j,i)
            end do
            ans = ans-tmp/psi_buf2(i)*psi_buf1(point_indx,i)
        end do

        return
    end function psi_internal_point

    recursive real function psi_external_point(num_point, x, mono_indx, x0) result(ans)
        integer, intent(in) :: num_point
        real, intent(in), target :: x(num_dim,num_point)
        integer, intent(in) :: mono_indx            ! current monomial index (recursive)
        real, intent(in) :: x0(num_dim)

        real :: tmp
        real, pointer :: xk(:)
        integer :: i, j

        if(mono_indx == 1) then
            ans = 1
            return
        end if

        do i = num_dim, 1, -1
            if(exponents(mono_indx,i) /= 0) then
                xk => x(i,:)
                ans = x0(i)*psi_external_point(num_point, x, mono_indx-1, x0)
                exit
            end if
        end do

        do i = 1, mono_indx-1
            tmp = 0.0
            do j = 1, num_point
                tmp = tmp+xk(j)*psi_buf1(j,mono_indx-1)*psi_buf1(j,i)
            end do
            ans = ans-tmp/psi_buf2(i)*psi_external_point(num_point, x, i, x0)
        end do

        return
    end function psi_external_point

    subroutine OMLS_finalize

        if(allocated(ranges))    deallocate(ranges)
        if(allocated(exponents)) deallocate(exponents)
        if(allocated(coef))      deallocate(coef)
        if(allocated(psi_buf1))  deallocate(psi_buf1)
        if(allocated(psi_buf2))  deallocate(psi_buf2)

    end subroutine OMLS_finalize

end module orthogonal_multinomials_least_squares

Can someone check the codes and find out the problems?

Thanks! [bigears]
 
I compiled what you posted
Code:
$ g95 omls.f95 main1D.f95 -o main1D
$ g95 omls.f95 main2D.f95 -o main2D
and I got this for 1D case
Code:
$ main1D
ranges:
row  2:  1
row  3:  1
row  4:  1

exponents:
 0
 1
 2
 3
 10. -4.172325E-7 2.2351742E-7 -9.685755E-8
 -4.172325E-7 0.82141197 7.680684E-8 -4.052819E-8
 2.2351742E-7 7.680684E-8 0.051683094 -6.5302808E-9
 -9.685755E-8 -4.052819E-8 -6.5302808E-9 0.002921586
The coefficients are:
 0.08532908
 0.113529764
 1.0000006
 -0.0000066195453
At line 30 of file main1D.f95 (Unit 10 "input_1d.dat")
Traceback: not available, compile with -ftrace=frame or -ftrace=full
Fortran runtime error: Writing more data than the record size (RECL)
and this for 2D case
Code:
$ main2D
ranges:
row  2:  1 1
row  3:  2 1

exponents:
 0 0
 1 0
 0 1
 2 0
 1 1
 0 2
 100. -0.000011026859 0.000006765127 -0.000004224479 0.0000021345913 -8.046627E-7
 -0.000011026859 8.256116 2.2962104E-7 -1.6208017E-7 1.5597467E-7 -7.000696E-8
 0.000006765127 2.2962104E-7 0.68096757 1.7144359E-7 -1.33606E-7 5.9018056E-8
 -0.000004224479 -1.6208017E-7 1.7144359E-7 0.09983599 2.2540524E-8 -1.3280461E-8
 0.0000021345913 1.5597467E-7 -1.33606E-7 2.2540524E-8 0.010036671 -2.437716E-9
 -8.046627E-7 -7.000696E-8 5.9018056E-8 -1.3280461E-8 -2.437716E-9 0.0005392365
The coefficients are:
 0.17132877
 0.11274268
 0.0012611715
 0.7948029
 8.678204
 -5.319545
At line 34 of file main2D.f95 (Unit 10 "input_2d.dat")
Traceback: not available, compile with -ftrace=frame or -ftrace=full
Fortran runtime error: Writing more data than the record size (RECL)
What is wrong on 2D-case in difference to 1D-case ?
 
Hi, mikrom,

What do you mean about the difference between 1D-case and 2D-case? The program is running normally, the only problem is the record length setting at the open file statement. You can adjust it according to your computing environment.

Thanks for replying!

DONG Li
 
Hi dongli,

In your original post you wrote
dongli said:
The result is ok in 1D problems, but not good in 2D..
Therefore I asked, what is wrong in 2D.
 
Hi mikrom,

Oh, I see. [dazed] You can plot the result of 2D-case. When the data points are sampled from parabolic surface, the approximated surface should fit the original one very well (I suppose so). Since the basis function is multinomial, the information contained in this approximation system should be enough to capture parabolic surface. The 1D-case is fine.

 
So as I understand, there is no problem with your program.
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor

Back
Top