I was given a puzzle. I read the solution. I don't understand the solution. Given that the puzzle was a just a warm-up, I'm slightly embarrassed and exasperated.
Here it is:
There are 2 rectangular identical cakes. Jeremy is the cutter. His friend Marie is there hoping to get as much cake as possible (along with Jeremy). Jeremy will cut the first cake into two pieces, perhaps evenly, perhaps not. After seeing the cut Marie will decide to choose first (and take the bigger piece...both parties want as much cake as possible). If she goes first, she will take the larger piece. If she goes second, she can assume Jeremy will take the larger piece.
Next, Jeremy will cut the second cake into two pieces (remember that one of the pieces can be vanishingly small if he so chooses). If Marie had chosen first for the first cake, then Jeremy gets the larger piece of the second cake. If Marie had chosen second for the first cake, then she gets the larger piece of the second cake.
Assuming each person will strive to get the most total cake possible, what is an optimal strategy for Jeremy?
Hint: Assume that Jeremy divides the first cake into fractions f and 1-f where f is at least 1/2.
While this isn't the whole solution, here's what is relevant:
If Marie takes the fraction f piece, then Jeremy will take the entire second cake. So, Marie will get exactly f and Jeremy will get (1-f) +1. If Marie takes the smaller piece of the first cake (fraction 1-f), Jeremy will do best if he divides the second cake in half. This gives Marie (1-f) +1/2. Jeremy follows this reasoning, so realizes that the best he can do is to make f = (1-f) +1/2. That is, 2f = 1.5 or f = 3/4.
My Question:
What I don't understand are the steps in Jeremy's reasoning that lead him to conclude the best he can do is when f = (1-f) +.5 ? WHY is the best Jeremy can do when the big piece of the first cake (f) is the same amount as the small piece of the first cake (1-f) plus half of the second cake?
Here it is:
There are 2 rectangular identical cakes. Jeremy is the cutter. His friend Marie is there hoping to get as much cake as possible (along with Jeremy). Jeremy will cut the first cake into two pieces, perhaps evenly, perhaps not. After seeing the cut Marie will decide to choose first (and take the bigger piece...both parties want as much cake as possible). If she goes first, she will take the larger piece. If she goes second, she can assume Jeremy will take the larger piece.
Next, Jeremy will cut the second cake into two pieces (remember that one of the pieces can be vanishingly small if he so chooses). If Marie had chosen first for the first cake, then Jeremy gets the larger piece of the second cake. If Marie had chosen second for the first cake, then she gets the larger piece of the second cake.
Assuming each person will strive to get the most total cake possible, what is an optimal strategy for Jeremy?
Hint: Assume that Jeremy divides the first cake into fractions f and 1-f where f is at least 1/2.
While this isn't the whole solution, here's what is relevant:
If Marie takes the fraction f piece, then Jeremy will take the entire second cake. So, Marie will get exactly f and Jeremy will get (1-f) +1. If Marie takes the smaller piece of the first cake (fraction 1-f), Jeremy will do best if he divides the second cake in half. This gives Marie (1-f) +1/2. Jeremy follows this reasoning, so realizes that the best he can do is to make f = (1-f) +1/2. That is, 2f = 1.5 or f = 3/4.
My Question:
What I don't understand are the steps in Jeremy's reasoning that lead him to conclude the best he can do is when f = (1-f) +.5 ? WHY is the best Jeremy can do when the big piece of the first cake (f) is the same amount as the small piece of the first cake (1-f) plus half of the second cake?