Tek-Tips is the largest IT community on the Internet today!

Members share and learn making Tek-Tips Forums the best source of peer-reviewed technical information on the Internet!

  • Congratulations IamaSherpa on being selected by the Tek-Tips community for having the most helpful posts in the forums last week. Way to Go!

Problem with precision solving one math series!

Status
Not open for further replies.

guilhermemarques

Programmer
Jun 15, 2009
3
Hey guys,

I have to program a Fortran code to solve the problem: S = 1/1 + 1/2 + ... + 1/T to get the largest S possible.
Actually my fortran program is like:

program test
implicit none
real :: T = 17000000, S = 0;
do while (T<17000000)
S = S + 1/T
T = T + 1
end do

print *,"S Value = ",S


end program test

And it just don´t solve the problem, for example, with a T value 16000000 the program solves. So i think it´s the precision of the real variable...
How can i solve this problema in Fortran?

Thanks in advance.
 
You can't solve any problems with this program. See: T < 17000000 is equal to false if T = 17000000...
Besides that, change real to double precision to provide ~16 digits precision instead ~7 for real.
 
My mistake, in the original program was:
"do while (T<17000099)"

How can i declare one double variable in Fortran?
I tried double :: var
But it doesn´t work.
 
It varies depending on which compiler you're using

In F77
DOUBLE PRECISION

In Intel IVF/CVF
REAL*8

In Salford/Silverfrost
REAL*3
REAL*2 takes 8 bytes

I've also seen
REAL*10
REAL*12
REAL*16

but not all compilers take them.
 
Thanks xwb, im using a G77 compiler.
Actually the real*8 works.
But the maximum value for T is yet small. When i tried to reach "(T<2200000000)" for example, it doesn´t work.
Error msg:

~Fonte1.f:5:
do while (T<2200000000)
^
Integer at (^) too large

My code:

program teste
implicit none
real*8 :: T =1, S= 0
print *,"Tataluga Project"
do while (T<2100000000)
S = S + 1/T
T = T + 1
end do

print *,"S value = ",S

end program teste

Any tips? Like using another compiler, another kind of precision instead of real*8, another code struct?

Thanks.
 
Sum(1/t) where t goes from 1 to infinity is known as harmonic series. This infinity series is divergent but it diverges very slowly.
You can compute the sum of a series so long, until sum_of_series - sum_of_series_previous is approximately equal zero.
However, in numerical computation instead of using absolute zero it is rather used a approximation of the zero - aka machine epsilon, which is a number which fulfills the condition: macheps + 1 = macheps (analogical to 0+1 = 0)
Machine epsilon is machine dependent.

So here is an example
Code:
[COLOR=#a020f0]module[/color] my_numeric
[COLOR=#a020f0]contains[/color]
  [COLOR=#a020f0]function[/color] machine_epsilon(start) [COLOR=#a020f0]result[/color] (macheps)
    [COLOR=#0000ff]! Machine Epsilon[/color]
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: start
[COLOR=#2e8b57][b]    real[/b][/color] :: macheps
    macheps [COLOR=#804040][b]=[/b][/color] start
    [COLOR=#804040][b]do[/b][/color] [COLOR=#804040][b]while[/b][/color] (macheps [COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1.0[/color] [COLOR=#804040][b]>[/b][/color] [COLOR=#ff00ff]1.0[/color])
      macheps [COLOR=#804040][b]=[/b][/color] macheps [COLOR=#804040][b]/[/b][/color] [COLOR=#ff00ff]2.0[/color]
      [COLOR=#0000ff]!write (*,*) 'macheps =', macheps[/color]
    [COLOR=#804040][b]end do[/b][/color]   
  [COLOR=#a020f0]end function[/color] machine_epsilon 

  [COLOR=#a020f0]subroutine[/color] harmonic_series(macheps)
    [COLOR=#0000ff]! t and sum(1/t) aka harmonic series[/color]
[COLOR=#2e8b57][b]    real[/b][/color] :: macheps, s, s_old, t    
    s_old [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]0.0[/color]
    s [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1.0[/color]
    t[COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1[/color]
    [COLOR=#0000ff]!write (*,*) 't = ', t,':         s = ', s, ' s_old = ', s_old [/color]
    [COLOR=#804040][b]do[/b][/color] [COLOR=#804040][b]while[/b][/color] ((s [COLOR=#804040][b]-[/b][/color] s_old) [COLOR=#804040][b]>[/b][/color] macheps)
      t [COLOR=#804040][b]=[/b][/color] t [COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1[/color]
      s_old [COLOR=#804040][b]=[/b][/color] s
      s [COLOR=#804040][b]=[/b][/color] s [COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1.0[/color][COLOR=#804040][b]/[/b][/color]t
      [COLOR=#0000ff]!write (*,*) 't = ', t,':         s = ', s, ' s_old = ', s_old [/color]
    [COLOR=#804040][b]end do[/b][/color]
    [COLOR=#804040][b]write[/b][/color] ([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Result for given macheps = '[/color], macheps
    [COLOR=#804040][b]write[/b][/color] ([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'t = '[/color], t,[COLOR=#ff00ff]':         sum(1/t) = '[/color], s
  [COLOR=#a020f0]end subroutine[/color] harmonic_series
[COLOR=#a020f0]end module[/color] my_numeric

[COLOR=#a020f0]program[/color] sum_of_series
  [COLOR=#a020f0]use[/color] my_numeric

[COLOR=#2e8b57][b]  real[/b][/color] :: macheps, s, s_old, t

  [COLOR=#0000ff]! compute Machine Epsilon[/color]
  macheps [COLOR=#804040][b]=[/b][/color] machine_epsilon([COLOR=#ff00ff]0.5[/color])
  [COLOR=#804040][b]write[/b][/color] ([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Machine Epsilon ='[/color], macheps

  [COLOR=#0000ff]! compute largest possible t for sum(1/t) aka harmonic series [/color]
  [COLOR=#a020f0]call[/color] harmonic_series(macheps)
[COLOR=#a020f0]end program[/color] sum_of_series

Compiling and running
Code:
$ g95 macheps.f90 -o macheps

$ macheps
 Machine Epsilon = 5.421011E-20
 Result for given macheps =  5.421011E-20
 t =  2097152. :         sum(1/t) =  15.403683

If you want to see how it works uncomment the write stataments in the function and the subroutine.
 
Sorry, in my previous post is a typo - it should be:
...
machine epsilon, which is a number which fulfills the condition: macheps + 1 = 1 (analogical to 0+1 = 1)
...
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor

Back
Top