Tek-Tips is the largest IT community on the Internet today!

Members share and learn making Tek-Tips Forums the best source of peer-reviewed technical information on the Internet!

  • Congratulations IamaSherpa on being selected by the Tek-Tips community for having the most helpful posts in the forums last week. Way to Go!

Determinant using Laplace expansion

Status
Not open for further replies.

freddyn

Technical User
Jan 22, 2013
3
DE
Hello!
Do somebody know where the code for calculating a determinant by Laplace theorem (in Fortran) can be found? Or maybe somebody could help with this issue.
Thank you!
 
To answer your question I tired this and it seems to work:

determinant.f95
Code:
[COLOR=#a020f0]module[/color] matrix_functions
  [COLOR=#2e8b57][b]implicit[/b][/color] [COLOR=#2e8b57][b]none[/b][/color]
[COLOR=#a020f0]contains[/color]
  [COLOR=#a020f0]subroutine[/color] print_matrix(matrix)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, j, m, n
    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    m [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]2[/color])
    [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], m
      [COLOR=#804040][b]do[/b][/color] j[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
        [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#ff00ff]'(f8.2)'[/color],[COLOR=#804040][b]advance[/b][/color] [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]'no'[/color]) matrix(i,j)
      [COLOR=#804040][b]end do[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])
    [COLOR=#804040][b]end do[/b][/color]
    [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])
  [COLOR=#a020f0]end subroutine[/color] print_matrix 

  [COLOR=#a020f0]function[/color] cofactor(matrix, mI, mJ)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color], [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: mI, mJ
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, j, k, l, n
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color]) :: cofactor
    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    [COLOR=#804040][b]if[/b][/color] (msize([COLOR=#ff00ff]1[/color]) [COLOR=#804040][b].ne.[/b][/color] msize([COLOR=#ff00ff]2[/color])) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Error in Cofactor: Input must be a square Matrix!'[/color]
      [COLOR=#804040][b]return[/b][/color]
    [COLOR=#804040][b]end if[/b][/color]
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])

    k [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1[/color]
    [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
      [COLOR=#804040][b]if[/b][/color] (i [COLOR=#804040][b].ne.[/b][/color] mI) [COLOR=#804040][b]then[/b][/color]
         l [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1[/color]
         [COLOR=#804040][b]do[/b][/color] j[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
           [COLOR=#804040][b]if[/b][/color] (j [COLOR=#804040][b].ne.[/b][/color] mJ) [COLOR=#804040][b]then[/b][/color]
             cofactor(k,l) [COLOR=#804040][b]=[/b][/color] matrix(i,j)
             l [COLOR=#804040][b]=[/b][/color] l[COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1[/color]
           [COLOR=#804040][b]end if[/b][/color]
         [COLOR=#804040][b]end do[/b][/color]
         k [COLOR=#804040][b]=[/b][/color] k[COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1[/color]
      [COLOR=#804040][b]end if[/b][/color]
    [COLOR=#804040][b]end do[/b][/color]
    [COLOR=#804040][b]return[/b][/color]
  [COLOR=#a020f0]end function[/color] cofactor

  [COLOR=#0000ff]! Expansion of determinants using Laplace formula[/color]
  [COLOR=#a020f0]recursive[/color] [COLOR=#a020f0]function[/color] determinant(matrix) [COLOR=#a020f0]result[/color](laplace_det)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, n, sgn
[COLOR=#2e8b57][b]    real[/b][/color] :: laplace_det, det
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]allocatable[/b][/color] :: cf

    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    [COLOR=#804040][b]if[/b][/color] (msize([COLOR=#ff00ff]1[/color]) [COLOR=#804040][b].ne.[/b][/color] msize([COLOR=#ff00ff]2[/color])) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Error in Determinant: Input must be a square Matrix!'[/color]
      [COLOR=#804040][b]return[/b][/color]
    [COLOR=#804040][b]end if[/b][/color]
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])
    
    [COLOR=#804040][b]if[/b][/color] (n [COLOR=#804040][b].eq.[/b][/color] [COLOR=#ff00ff]1[/color]) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#0000ff]! determinant of matrix 1 x 1, i.e. number[/color]
      det [COLOR=#804040][b]=[/b][/color] matrix([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color])
    [COLOR=#804040][b]else[/b][/color]
      det [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]0[/color]
      [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
        sgn [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]merge[/color]([COLOR=#ff00ff]1[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#008080]mod[/color](i,[COLOR=#ff00ff]2[/color]) [COLOR=#804040][b].eq.[/b][/color] [COLOR=#ff00ff]1[/color])
        [COLOR=#804040][b]allocate[/b][/color](cf(n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color]))
        cf [COLOR=#804040][b]=[/b][/color] cofactor(matrix, i, [COLOR=#ff00ff]1[/color])
        det [COLOR=#804040][b]=[/b][/color] det [COLOR=#804040][b]+[/b][/color] sgn [COLOR=#804040][b]*[/b][/color] matrix(i,[COLOR=#ff00ff]1[/color]) [COLOR=#804040][b]*[/b][/color] determinant(cf)
        [COLOR=#804040][b]deallocate[/b][/color](cf)
      [COLOR=#804040][b]end do[/b][/color]        
    [COLOR=#804040][b]end if[/b][/color]
    [COLOR=#0000ff]![/color]
    laplace_det [COLOR=#804040][b]=[/b][/color] det
  [COLOR=#a020f0]end function[/color] determinant
[COLOR=#a020f0]end module[/color] matrix_functions


[COLOR=#a020f0]program[/color] main
  [COLOR=#a020f0]use[/color] matrix_functions

[COLOR=#2e8b57][b]  real[/b][/color] :: A1([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color]), A2([COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]2[/color]), A3([COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]3[/color]), A4([COLOR=#ff00ff]4[/color],[COLOR=#ff00ff]4[/color])
[COLOR=#2e8b57][b]  real[/b][/color] :: det 

  [COLOR=#0000ff]! matrix A1[/color]
  A1([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color])[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]5[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A1:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#a020f0]call[/color] print_matrix(A1)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A1:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A1)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A2[/color]
  A2([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]7[/color], [COLOR=#ff00ff]6[/color][COLOR=#804040][b]/[/b][/color])
  A2([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]9[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A2:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#a020f0]call[/color] print_matrix(A2)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A2:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A2)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A3[/color]
  A3([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/-[/b][/color][COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]2[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A3([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/-[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#ff00ff]1[/color],  [COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A3([COLOR=#ff00ff]3[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color] [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]0[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A3:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#a020f0]call[/color] print_matrix(A3)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A3:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A3)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A4[/color]
  A4([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]0[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]2[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]3[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]4[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]6[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]4[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]5[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color],  [COLOR=#ff00ff]0[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A4:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#a020f0]call[/color] print_matrix(A4)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A4:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A4)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])  
[COLOR=#a020f0]end program[/color] main

Output:
Code:
$ gfortran determinant.f95 -o determinant

$ determinant
 Matrix A1:
 ----------
    5.00

 Determinant of A1:
 -----------------
   5.0000000    

 Matrix A2:
 ----------
    7.00    6.00
    3.00    9.00

 Determinant of A2:
 -----------------
   45.000000    

 Matrix A3:
 ----------
   -2.00    2.00   -3.00
   -1.00    1.00    3.00
    2.00    0.00   -1.00

 Determinant of A3:
 -----------------
   18.000000    

 Matrix A4:
 ----------
    3.00    0.00    2.00   -1.00
    1.00    2.00    0.00   -2.00
    4.00    0.00    6.00   -3.00
    5.00    0.00    2.00    0.00

 Determinant of A4:
 -----------------
   20.000000
 
As mentioned here
this construct
Code:
  function cofactor(matrix, mI, mJ)
    ...
    real, dimension(n-1, n-1) :: cofactor
    msize = shape(matrix)
    ...
    n = msize(1)
doesn't compile with newer gfortran version.
I tried it with g95 and got the similar error too:
Code:
In file determinant.f95:23

    real, dimension(n-1, n-1) :: cofactor
                    1
Error: Variable 'n' cannot appear in restricted expression at (1)
It seems that it compiled only with my older gfortran version 4.4.0
 
The corrected code:
Code:
[COLOR=#a020f0]module[/color] matrix_functions
  [COLOR=#2e8b57][b]implicit[/b][/color] [COLOR=#2e8b57][b]none[/b][/color]
[COLOR=#a020f0]contains[/color]
  [COLOR=#a020f0]subroutine[/color] print_matrix(matrix)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, j, m, n
    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    m [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]2[/color])
    [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], m
      [COLOR=#804040][b]do[/b][/color] j[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
        [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#ff00ff]'(f8.2)'[/color],[COLOR=#804040][b]advance[/b][/color] [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]'no'[/color]) matrix(i,j)
      [COLOR=#804040][b]end do[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])
    [COLOR=#804040][b]end do[/b][/color]
    [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])
  [COLOR=#a020f0]end subroutine[/color] print_matrix 

  [COLOR=#a020f0]function[/color] cofactor(matrix, mI, mJ)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color], [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: mI, mJ
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, j, k, l, n
    [COLOR=#0000ff]! this doesn't work with with g95 and newer gfortran version: [/color]
    [COLOR=#0000ff]!real, dimension(n-1, n-1) :: cofactor[/color]
    [COLOR=#0000ff]! but this works with g95 and newer gfortran version:[/color]
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]allocatable[/b][/color] :: cofactor
    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    [COLOR=#804040][b]if[/b][/color] (msize([COLOR=#ff00ff]1[/color]) [COLOR=#804040][b].ne.[/b][/color] msize([COLOR=#ff00ff]2[/color])) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Error in Cofactor: Input must be a square Matrix!'[/color]
      [COLOR=#804040][b]return[/b][/color]
    [COLOR=#804040][b]end if[/b][/color]
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])
    [COLOR=#0000ff]![/color]
    [COLOR=#804040][b]allocate[/b][/color](cofactor(n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color]))

    k [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1[/color]
    [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
      [COLOR=#804040][b]if[/b][/color] (i [COLOR=#804040][b].ne.[/b][/color] mI) [COLOR=#804040][b]then[/b][/color]
         l [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]1[/color]
         [COLOR=#804040][b]do[/b][/color] j[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
           [COLOR=#804040][b]if[/b][/color] (j [COLOR=#804040][b].ne.[/b][/color] mJ) [COLOR=#804040][b]then[/b][/color]
             cofactor(k,l) [COLOR=#804040][b]=[/b][/color] matrix(i,j)
             l [COLOR=#804040][b]=[/b][/color] l[COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1[/color]
           [COLOR=#804040][b]end if[/b][/color]
         [COLOR=#804040][b]end do[/b][/color]
         k [COLOR=#804040][b]=[/b][/color] k[COLOR=#804040][b]+[/b][/color] [COLOR=#ff00ff]1[/color]
      [COLOR=#804040][b]end if[/b][/color]
    [COLOR=#804040][b]end do[/b][/color]
    [COLOR=#804040][b]return[/b][/color]
  [COLOR=#a020f0]end function[/color] cofactor

  [COLOR=#0000ff]! Expansion of determinants using Laplace formula[/color]
  [COLOR=#a020f0]recursive[/color] [COLOR=#a020f0]function[/color] determinant(matrix) [COLOR=#a020f0]result[/color](laplace_det)
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]intent[/b][/color]([COLOR=#2e8b57][b]in[/b][/color]) :: matrix
    [COLOR=#2e8b57][b]integer[/b][/color] :: msize([COLOR=#ff00ff]2[/color]), i, n, sgn
[COLOR=#2e8b57][b]    real[/b][/color] :: laplace_det, det
[COLOR=#2e8b57][b]    real[/b][/color], [COLOR=#2e8b57][b]dimension[/b][/color](:,:), [COLOR=#2e8b57][b]allocatable[/b][/color] :: cf

    msize [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]shape[/color](matrix)
    [COLOR=#804040][b]if[/b][/color] (msize([COLOR=#ff00ff]1[/color]) [COLOR=#804040][b].ne.[/b][/color] msize([COLOR=#ff00ff]2[/color])) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Error in Determinant: Input must be a square Matrix!'[/color]
      [COLOR=#804040][b]return[/b][/color]
    [COLOR=#804040][b]end if[/b][/color]
    n [COLOR=#804040][b]=[/b][/color] msize([COLOR=#ff00ff]1[/color])
    
    [COLOR=#804040][b]if[/b][/color] (n [COLOR=#804040][b].eq.[/b][/color] [COLOR=#ff00ff]1[/color]) [COLOR=#804040][b]then[/b][/color]
      [COLOR=#0000ff]! determinant of matrix 1 x 1, i.e. number[/color]
      det [COLOR=#804040][b]=[/b][/color] matrix([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color])
    [COLOR=#804040][b]else[/b][/color]
      det [COLOR=#804040][b]=[/b][/color] [COLOR=#ff00ff]0[/color]
      [COLOR=#804040][b]do[/b][/color] i[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]1[/color], n
        sgn [COLOR=#804040][b]=[/b][/color] [COLOR=#008080]merge[/color]([COLOR=#ff00ff]1[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#008080]mod[/color](i,[COLOR=#ff00ff]2[/color]) [COLOR=#804040][b].eq.[/b][/color] [COLOR=#ff00ff]1[/color])
        [COLOR=#804040][b]allocate[/b][/color](cf(n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color], n[COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color]))
        cf [COLOR=#804040][b]=[/b][/color] cofactor(matrix, i, [COLOR=#ff00ff]1[/color])
        det [COLOR=#804040][b]=[/b][/color] det [COLOR=#804040][b]+[/b][/color] sgn [COLOR=#804040][b]*[/b][/color] matrix(i,[COLOR=#ff00ff]1[/color]) [COLOR=#804040][b]*[/b][/color] determinant(cf)
        [COLOR=#804040][b]deallocate[/b][/color](cf)
      [COLOR=#804040][b]end do[/b][/color]        
    [COLOR=#804040][b]end if[/b][/color]
    [COLOR=#0000ff]![/color]
    laplace_det [COLOR=#804040][b]=[/b][/color] det
  [COLOR=#a020f0]end function[/color] determinant
[COLOR=#a020f0]end module[/color] matrix_functions


[COLOR=#a020f0]program[/color] main
  [COLOR=#a020f0]use[/color] matrix_functions

[COLOR=#2e8b57][b]  real[/b][/color] :: A1([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color]), A2([COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]2[/color]), A3([COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]3[/color]), A4([COLOR=#ff00ff]4[/color],[COLOR=#ff00ff]4[/color]), A5([COLOR=#ff00ff]5[/color],[COLOR=#ff00ff]5[/color])
[COLOR=#2e8b57][b]  real[/b][/color] :: det 

  [COLOR=#0000ff]! matrix A1[/color]
  A1([COLOR=#ff00ff]1[/color],[COLOR=#ff00ff]1[/color])[COLOR=#804040][b]=[/b][/color][COLOR=#ff00ff]5[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A1:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#008080]call[/color] print_matrix(A1)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A1:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A1)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A2[/color]
  A2([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]7[/color], [COLOR=#ff00ff]6[/color][COLOR=#804040][b]/[/b][/color])
  A2([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]9[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A2:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#008080]call[/color] print_matrix(A2)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A2:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A2)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A3[/color]
  A3([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/-[/b][/color][COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]2[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A3([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/-[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#ff00ff]1[/color],  [COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A3([COLOR=#ff00ff]3[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color] [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]0[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A3:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#008080]call[/color] print_matrix(A3)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A3:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A3)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A4[/color]
  A4([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]1[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]1[/color], [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]0[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]2[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]3[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]4[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]6[/color], [COLOR=#804040][b]-[/b][/color][COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A4([COLOR=#ff00ff]4[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]5[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color],  [COLOR=#ff00ff]0[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A4:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#008080]call[/color] print_matrix(A4)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A4:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A4)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])

  [COLOR=#0000ff]! matrix A5[/color]
  A5([COLOR=#ff00ff]1[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]5[/color], [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color][COLOR=#804040][b]/[/b][/color])
  A5([COLOR=#ff00ff]2[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]1[/color], [COLOR=#ff00ff]4[/color], [COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]2[/color][COLOR=#804040][b]/[/b][/color])
  A5([COLOR=#ff00ff]3[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]6[/color], [COLOR=#ff00ff]2[/color], [COLOR=#ff00ff]3[/color][COLOR=#804040][b]/[/b][/color])
  A5([COLOR=#ff00ff]4[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]4[/color], [COLOR=#ff00ff]3[/color], [COLOR=#ff00ff]1[/color][COLOR=#804040][b]/[/b][/color])
  A5([COLOR=#ff00ff]5[/color],:)[COLOR=#804040][b]=[/b][/color]([COLOR=#804040][b]/[/b][/color][COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]0[/color], [COLOR=#ff00ff]2[/color][COLOR=#804040][b]/[/b][/color])
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Matrix A5:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'----------'[/color]
  [COLOR=#008080]call[/color] print_matrix(A5)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'Determinant of A5:'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) [COLOR=#ff00ff]'-----------------'[/color]
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color]) determinant(A5)
  [COLOR=#804040][b]write[/b][/color]([COLOR=#804040][b]*[/b][/color],[COLOR=#804040][b]*[/b][/color])    
[COLOR=#a020f0]end program[/color] main

Now it compiles fine with newer version of gfortran and g95:
Code:
$ g95 determinant.f95 -o determinant

$ determinant
 Matrix A1:
 ----------
    5.00

 Determinant of A1:
 -----------------
 5.

 Matrix A2:
 ----------
    7.00    6.00
    3.00    9.00

 Determinant of A2:
 -----------------
 45.

 Matrix A3:
 ----------
   -2.00    2.00   -3.00
   -1.00    1.00    3.00
    2.00    0.00   -1.00

 Determinant of A3:
 -----------------
 18.

 Matrix A4:
 ----------
    3.00    0.00    2.00   -1.00
    1.00    2.00    0.00   -2.00
    4.00    0.00    6.00   -3.00
    5.00    0.00    2.00    0.00

 Determinant of A4:
 -----------------
 20.

 Matrix A5:
 ----------
    5.00    2.00    0.00    0.00    2.00
    0.00    1.00    4.00    3.00    2.00
    0.00    0.00    6.00    2.00    3.00
    0.00    0.00    4.00    3.00    1.00
    0.00    0.00    0.00    0.00    2.00

 Determinant of A5:
 -----------------
 100.
 
Thank you! Great job!
 
But the algorithm isn't very optimal, because the number of recursive calls seems to be n!
To reduce the number of recursions a little bit, you can compute the cases for N=2 and N=3 usning the known formulas without recursion - i.e. for N=2: m11*m22 - m12*m21 and for N=3: Rule of Sarus
 
yes thats a nice idea
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor

Back
Top